Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Chem Biol ; 5(4): 360-371, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38576723

RESUMO

We developed chemically modified PCR primers that allow the design of flexible sticky ends by introducing a photo-cleavable group at the phosphate moiety. Nucleic acid derivatives containing o-nitrobenzyl photo-cleavable groups with a tert-butyl group at the benzyl position were stable during strong base treatment for oligonucleotide synthesis and thermal cycling in PCR reactions. PCR using primers incorporating these nucleic acid derivatives confirmed that chain extension reactions completely stopped at position 1 before and after the site of the photo-cleavable group was introduced. DNA fragments of 2 and 3 kbp, with sticky ends of 50 bases, were successfully concatenated with a high yield of 77%. A plasmid was constructed using this method. Finally, we applied this approach to construct a 48.5 kbp lambda phage DNA, which is difficult to achieve using restriction enzyme-based methods. After 7 days, we were able to confirm the generation of DNA of the desired length. Although the efficiency is yet to be improved, the chemically modified PCR primer offers potential to complement enzymatic methods and serve as a DNA concatenation technique.

2.
ACS Omega ; 9(8): 9300-9308, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434802

RESUMO

To study transcriptome dynamics without harming cells, it is essential to convert chemical bases. 4-Thiouridine (4sU) is a biocompatible uridine analogue that can be converted into a cytidine analogue. Although several reactions can convert 4sU into a cytidine analogue, few studies have compared the features of these reactions. In this study, we performed three reported base conversion reactions, including osmium tetroxide, iodoacetamide, and sodium periodate treatment, as well as a new reaction using 2,4-dinitrofluorobenzene. We compared the reaction time, conversion efficacy, and effects on reverse transcription. These reactions successfully converted 4sU into a cytidine analogue quantitatively using trinucleotides. However, the conversion efficacy and effect on reverse transcription vary depending on the reaction with the RNA transcript. OsO4 treatment followed by NH4Cl treatment showed the best base-conversion efficiency. Nevertheless, each reaction has its own advantages and disadvantages as a tool for studying the transcriptome. Therefore, it is crucial to select the appropriate reaction for the target of interest.

3.
Nat Commun ; 14(1): 2657, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169757

RESUMO

Starting with the clinical application of two vaccines in 2020, mRNA therapeutics are currently being investigated for a variety of applications. Removing immunogenic uncapped mRNA from transcribed mRNA is critical in mRNA research and clinical applications. Commonly used capping methods provide maximum capping efficiency of around 80-90% for widely used Cap-0- and Cap-1-type mRNAs. However, uncapped and capped mRNA possesses almost identical physicochemical properties, posing challenges to their physical separation. In this work, we develop hydrophobic photocaged tag-modified cap analogs, which separate capped mRNA from uncapped mRNA by reversed-phase high-performance liquid chromatography. Subsequent photo-irradiation recovers footprint-free native capped mRNA. This approach provides 100% capping efficiency even in Cap-2-type mRNA with versatility applicable to 650 nt and 4,247 nt mRNA. We find that the Cap-2-type mRNA shows up to 3- to 4-fold higher translation activity in cultured cells and animals than the Cap-1-type mRNA prepared by the standard capping method.


Assuntos
Biossíntese de Proteínas , Capuzes de RNA , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Cultivadas , Capuzes de RNA/metabolismo
4.
Chembiochem ; 24(14): e202200572, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37253903

RESUMO

Controlling PCR fidelity is an important issue for molecular biology and high-fidelity PCR is essential for gene cloning. In general, fidelity control is achieved by protein engineering of polymerases. In contrast, only a few studies have reported controlling fidelity using chemically modified nucleotide substrates. In this report, we synthesized nucleotide substrates possessing a modification on Pγ and evaluated the effect of this modification on PCR fidelity. One of the substrates, nucleotide tetraphosphate, caused a modest decrease in Taq DNA polymerase activity and the effect on PCR fidelity was dependent on the type of mutation. The use of deoxyadenosine tetraphosphate enhanced the A : T→G : C mutation dramatically, which is common when using Taq polymerase. Conversely, deoxyguanosine tetraphosphate (dG4P) suppressed this mutation but increased the G : C→A : T mutation during PCR. Using an excess amount of dG4P suppressed both mutations successfully and total fidelity was improved.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Fosfatos , Taq Polimerase/genética , Taq Polimerase/metabolismo , Reação em Cadeia da Polimerase , Mutação , Nucleotídeos
5.
Org Biomol Chem ; 21(19): 3997-4001, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37186249

RESUMO

We herein report a new synthetic method for nucleoside oligophosphates based on electrophilic activation of 5'-phosphorothioate nucleotides. The treatment of phosphorothioate with 2,4-dinitrochlorobenzene (DNCB) efficiently afforded the key activated species, electrophilic thioester nucleotides (EPT-Ns), which were coupled with various phosphate reagents to afford the target nucleoside oligophosphates, including an mRNA cap analog.


Assuntos
Nucleosídeos , Nucleotídeos , Fosfatos , RNA Mensageiro
6.
J Dev Biol ; 12(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535481

RESUMO

The COVID-19 pandemic generated interest in the medicinal applications of messenger RNA (mRNA). It is expected that mRNA will be applied, not only to vaccines, but also to regenerative medicine. The purity of mRNA is important for its medicinal applications. However, the current mRNA synthesis techniques exhibit problems, including the contamination of undesired 5'-uncapped mRNA and double-stranded RNA. Recently, our group developed a completely capped mRNA synthesis technology that contributes to the progress of mRNA research. The introduction of chemically modified nucleosides, such as N1-methylpseudouridine and 5-methylcytidine, has been reported by Karikó and Weissman, opening a path for the practical application of mRNA for vaccines and regenerative medicine. Yamanaka reported the production of induced pluripotent stem cells (iPSCs) by introducing four types of genes using a retrovirus vector. iPSCs are widely used for research on regenerative medicine and the preparation of disease models to screen new drug candidates. Among the Yamanaka factors, Klf4 and c-Myc are oncogenes, and there is a risk of tumor development if these are integrated into genomic DNA. Therefore, regenerative medicine using mRNA, which poses no risk of genome insertion, has attracted attention. In this review, the author summarizes techniques for synthesizing mRNA and its application in regenerative medicine.

7.
ACS Chem Biol ; 17(6): 1308-1314, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35608277

RESUMO

Site-specific chemical modification of mRNA can improve its translational efficiency and stability. For this purpose, it is desirable to develop a complete chemical synthesis method for chemically modified mRNA. The key is a chemical reaction that introduces a cap structure into the chemically synthesized RNA. In this study, we developed a fast and quantitative chemical capping reaction between 5'-phosphorylated RNA and N7-methylated GDP imidazolide in the presence of 1-methylimidazole in the organic solvent dimethyl sulfoxide. It enabled quantitative preparation of capping RNA within 3 h. We prepared chemically modified 107-nucleotide mRNAs, including N6-methyladenosine, insertion of non-nucleotide linkers, and 2'-O-methylated nucleotides at the 5' end and evaluated their effects on translational activity in cultured HeLa cells. The results showed that mRNAs with non-nucleotide linkers in the untranslated regions were sufficiently tolerant to translation and that mRNAs with the Cap_2 structure had higher translational activity than those with the Cap_0 structure.


Assuntos
Nucleotídeos , Capuzes de RNA , Células HeLa , Humanos , Biossíntese de Proteínas , Capuzes de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...